Anisotropic Velocity Model Building and Pre Stack Depth Imaging Using Earth Study 360: A Case Study from Cauvery Basin

R.Pathak*, Anil Kumar, K.S.Negi, GEOPIC, ONGC, Dehradun

Keywords: Local angle domain, Angle Gathers, Azimuth, Tomography

Summary

Accurate depth imaging of subsurface is very important for reservoir characterization and delineation of geological features. The quality of a migration image depends strongly upon the accuracy of the velocity model. This article focuses on both the aspects. An innovative workflow has been adopted using well tie tomography during the process of anisotropic velocity model building, which serves the purpose of imaging and depthing all together. In this present study Earth Study 360 has been used as imaging tool which is recently developed full-azimuth angle domain imaging and analysis system designed to image, characterize, visualize and interpret the total seismic wave field in all directions.

A comprehensive case study has been demonstrated using data of Cauvery basin unveiling high quality depth imaging and very good matching of seismic events with well markers. Application of the AFE technique to diffraction imaged data yielded sharp and crisp definition of fault and fractures.

Introduction

There is an ever increasing demand for advanced velocity modeling and imaging techniques to provide an improved knowledge of subsurface structures in geologically complex areas as well as more accurate and quantifiable description of reservoir properties. The Earth Study 360 Imager (ES360 Imager) is a versatile cluster-based depth migration tool that simultaneously uses the full recorded wave field within a controlled aperture to generate amplitude preserved, multi-dimensional, subsurface angle gathers. ES360 is Bottom up ray tracing which easily handles the multi-pathing. Unlike conventional ray-based imaging methods (e.g. Kirchhoff migration), Earth Study 360 uses a point-diffractor operator to shoot rays from subsurface grid points to the surface, forming an accurate system for mapping the recorded surface seismic data into the subsurface Local Angle Domain (LAD) for each image point. This procedure ensures maximum illumination of the image points from all subsurface directions and surface source-receiver locations; all arrivals are taken into account and amplitudes and phases are preserved.

Earth Study 360 directional angle azimuth gathers enable specular and diffraction imaging, resulting in simultaneous emphasis on continuous structural surfaces and discontinuous objects such as faults or small-scale fractures. Structural attributes at each subsurface image point (e.g. dip, azimuth and specularity) can be derived directly from the directional angle azimuth gathers.

ES360 reflection angle-azimuth gathers display reflectivity as a function of opening angle and opening azimuth and are most meaningful in the vicinity of actual local reflecting surfaces, where the reflection angles are measured with respect to the derived background specular direction. They are used for automatic picking of full-azimuth, angle domain residual moveouts (RMO), which together with the derived background orientations of the subsurface reflection horizons, provide a complete set of data for anisotropic velocity model determination, fracture detection and reservoir characterization. Reflection angle gather are generated from the reflection angle azimuth gather by stacking over the azimuth.

The accurate estimate of velocities is the key factor for successful depth domain imaging. Tomography based velocity model building and refinement tools supplemented by structural component extracted from data plays very important role in this arena. 3D Grid/Model-Based tomography aims to flatten the common image gathers and minimize their residual moveouts (RMOs) to update the...
Anisotropic Velocity Model Building and Pre Stack Depth Imaging Using Earth study 360: A Case Study from Cauvery Basin

velocity model. The model update is driven by a measure of the non-flatness of pre-stack migrated gathers which are obtained by migration with the background subsurface velocity parameters. The output of the 3D Grid Tomography is an updated subsurface model. The derived parameters should yield flatter output gather after an additional migration of the input data. The tomography equations relate travel time errors measured on the migrated gathers to the subsurface model change through rays which are traced from subsurface reflectors to the surface.

A good seismic image is not enough for an exploration or field development interpretation. Good well tie and reliable time to depth conversion is also required.

Methodology
Velocity model building is a key critical element in depth domain imaging. Keeping this fact into mind special attention has been given for deriving precise interval velocity model. The salient features of velocity model building are as mentioned below.

Horizon picking/editing
The interpreted horizons were edited as and where it were required. Another horizon is picked in the shallower level in order to pick velocity. The basement was shifted downward by a constant amount (1000 ms) and a flat bottom boundary is added below that in order to pick velocity. Horizon grids are generated from the picks. Time migrated model map are generated in order to give the horizon grids a geological dominancy. QC of the model maps were performed.

Horizon based RMS velocity picking
After creating the time migrated model maps RMS velocity was picked along all the horizon at an inline interval of 20 (400 m). Velocity grids are generated from the velocity picks. RMS velocity volume was then generated using these velocity maps, QC was performed and test line PSTM was done in order to check the migrated gather flatness. A formation volume was also generated using the time migrated (TM) horizons. The horizon based velocity analysis is shown in figure 4.

Depth interval velocity modelling
The initial depth-interval velocity modelling is performed through constraint velocity inversion (CVI). Since horizon velocity analysis (HVA) preserves the lateral consistency, in CVI more weightage was given to the RMS data misfit. QC of the interval velocity volume is done and test line ES360 is performed in order to check the flatness of reflection angle-azimuth gather. TM horizons are then image ray map migrated to depth using the initial depth-interval velocity volume and depth model maps are generated.

Target line full azimuth angle domain migration was then performed for interval velocity refinement. 3D residual moveouts were picked on the reflection angle-azimuth gather using 3D prestack autopicker. The moveouts are picked along the depth maps. These full azimuth moveouts, initial interval velocity and the depth maps are the inputs for structural model based tomography. Tomographic matrix is then built that contain a sets of coupled equations relating the travel time delay. Finally this tomography matrix is solved in isotropic mode with optimized parameters. The outputs are updated isotropic depth-interval velocity and updated depth model maps. Structural model based tomography not only compensates the travel time delay it also update the depth of ray shooting point, causing a proper positioning of reflectors in depth. Two iteration of structural model based full azimuth tomography was performed and the gathers were found to be flat upto 30 degree.

ISO to VTI Conversion
Isotropic interval velocity thus obtained was converted into anisotropic (VTI) mode using well tie tomography. Anisotropic parameters epsilon and delta volume were updated. Further refinement of anisotropic interval velocity was done using RMO picking and grid base tomography in VTI mode. Three more iterations were done. Now gathers were found reasonably flat in far offset. The work flow for the velocity model building is illustrated in figure 3.
Anisotropic Velocity Model Building and Pre Stack Depth Imaging Using Earth study 360: A Case Study from Cauvery Basin

Depth Migration using Earth Study 360

The input used for the ES360 is conditioned residual statics applied gathers (CMP) and the final interval velocity volume. The parameters like half opening angle and aperture are finalized interactively using the ray tracing that gives the number of failed and successful ray counts. Target line experiments are also carried out to finalized opening and dip angles. Imaging was done in anisotropic mode, therefore, epsilon and delta volumes were also taken as input along with interval velocity. The final parameters used in ES360 imager are given in Table1

ES360 gather processing

The output of ES360 is Directional Angle-Azimuth gather and reflection Angle-Azimuth gather. Parameters for both specular & diffraction filters are optimized before taking the final stack. QC is performed on generated stack volumes and reflection angle gather. Specular stack contains the reflection energy coming from true subsurface reflection direction. So specular stack has greater continuity, higher signal to noise ratio and sharp edges. On the other hand the diffraction stack contains the diffracted energy coming from subsurface discontinuities. Since the recorded energy is decomposed in local angle domain (LAD) information regarding the subsurface dip & dip-azimuth can be extracted from the ES360 directional angle azimuth gather. This subsurface dip & dip-azimuth volumes extracted from prestack gather shows significant improvement over the conventional way of calculating dip & dip-azimuth from post stack volume generated by summing over all directional angles and azimuth with proper weighting factor from the 5D LAD gather.

Figure 5: A section along in line L1 from the interval velocity volume generated by constrained velocity inversion (CVI) along with seismic section overlay.

Figure 4: Horizon based velocity analysis along in line

Figure 6: Residual move out on angle azimuth gather and stack section along in line L1
Anisotropic Velocity Model Building and Pre Stack Depth Imaging Using Earth study 360: A Case Study from Cauvery Basin

Figure 7: Interval velocity section after VTI update along with well markers and depth horizons overlayed.

Figure 8: After VTI Update ES360 Stack, Well Markers, Depth Horizons along with interval Velocity overlay

Area of study

The area under study falls in Ramnathpuram Palk Bay tectonic block of Cauvery Basin. Ramnathpuram sub-basin and its continuation in Palk Bay-Gulf of Mannar area are bounded in the northwest by Pattukottai - Mannargudi ridge and in the southeast by Mandapam-Delft ridge. The sub-basin holds over 6000 m thick sediments, ranging in age from Lower Cretaceous to Recent. The synrift sedimentary column comprises mainly shale and sandstone in the Andimadam formation and Sattapadi Shale formation.

Data in the area was acquired under five different seismic investigations. Residual statics applied decon CMP gathers of merged data volume was taken as input for depth imaging deploying ES360. The nominal fold of the data is 80 and bin size is 20x20m. Location map is shown in figure 1. The study pertains to the Pre Stack Depth Migration of 400 sq. km 3D seismic data, using Earth Study 360 (ES360) Migration technology. The main objective of processing was to get realistic depth model for reservoir characterization using ES360 technology in a zone of 1000-5000 m depth.

Discussion

Velocity model building is very critical for depth imaging. Manual picking and updation of velocity volume is time consuming. Here state of the art velocity model building and updation technique has been demonstrated which is very efficient accurate and time saving Grid based tomography has been used with a new work flow. Structural attributes derived from the data and automatic picking of interlayer horizons improved accuracy of ray tracing resulting into more reliable and geologically consistent velocity model. Final migration velocity section after VTI update is shown in Figure 7 & 8.

Table 1: Final parameters used in ES360

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opening angle</td>
<td>65 (top)/50 (bottom)</td>
</tr>
<tr>
<td>Directional angle</td>
<td>80 (top)/60 (bottom)</td>
</tr>
<tr>
<td>Pencil distance</td>
<td>50 m</td>
</tr>
<tr>
<td>Aperture</td>
<td>10000 m x 10000 m;</td>
</tr>
<tr>
<td>Frequency</td>
<td>80 Hz</td>
</tr>
<tr>
<td>Frequency tapper</td>
<td>0.16</td>
</tr>
<tr>
<td>Lateral distance (pencil)</td>
<td>80 m (Min)/320 m (Max)</td>
</tr>
<tr>
<td>Lateral resolution factor</td>
<td>3</td>
</tr>
<tr>
<td>Vertical resolution factor</td>
<td>2</td>
</tr>
<tr>
<td>Vertical Increment</td>
<td>4 (Min)/8 (Max)</td>
</tr>
<tr>
<td>Reflection/Diffraction fold</td>
<td>500</td>
</tr>
</tbody>
</table>

Figure 9: ES360 specular stack before VTI updation
Anisotropic Velocity Model Building and Pre Stack Depth Imaging Using Earth study 360: A Case Study from Cauvery Basin

Figure 10: ES360 specular stack after VTI updation showing perfect match of horizon with markers

Figure 9 & 10 illustrate comparison between ES360 specular stacks before and after anisotropic velocity modelling. It can be concluded that seismic horizons are fairly matching with well markers at well location in case of anisotropic imaging.

In figures 11&12 results of Automatic Fault Extraction (AFE) technique have been demonstrated using specular and diffraction stack. Application of this technique have yielded sharp and crisp definition of faults and fractures. Figure 13 shows comparison of legend KPSDM and ES360 both scale to time. It is observed that ES360 images are more crisp, having higher resolution, better continuity along with fault definition.

In figure 13 depth slices generated through legend KPSDM and ES images have been compared at the same level. It is observed that structural features are more clear and sharp in the case of ES360. This can give a lead to interpreters in delineation of sub surface structures.

Figure 14 show depth slices from the volume generated through legend KPSDM (a) and ES360 (b) at 3000 meter depth.
Anisotropic Velocity Model Building and Pre Stack Depth Imaging Using Earth study 360: A Case Study from Cauvery Basin

![Comparison of a legend Kirchhoff (a) and ES360 PSDM stack (b) along in line direction.](image)

Table 2: Comparison of misties before and after VTI along well W1

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Horizons</th>
<th>Misties before VTI (mts.)</th>
<th>Misties after VTI (mts.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SB50</td>
<td>31</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>SB30</td>
<td>-8</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>KT</td>
<td>-36</td>
<td>-2</td>
</tr>
<tr>
<td>4</td>
<td>BVG</td>
<td>-10</td>
<td>-2</td>
</tr>
<tr>
<td>5</td>
<td>ADMT</td>
<td>137</td>
<td>4</td>
</tr>
</tbody>
</table>

Conclusions

In this present study both the issues of depth migration commonly known as imaging and depthing have been addressed simultaneously with an adaptation of high end technology. Specular & diffraction imaging is performed on ES360 migrated gathers. Final processed specular stack has better structural continuity, high S/N ratio and sharp edges. The diffraction stack delineates highly dipping events and subsurface fault networks. The combine output set will give better subsurface insight.

After anisotropic velocity modelling and ES360 imaging a very good matching of seismic horizons with well markers have been observed as shown in table 2. Velocity models thus obtained are accurate and suitable for depth imaging as well as highly reliable for time to depth conversion. It may also be pointed out that this process of velocity model building and refinement is very less time consuming as compared to conventional methodology being used for this purpose. The processed output has brought out improved sub-surface imaging and better fault delineation. The output shows a remarkable improvement at all levels in the volume as compared to the earlier processed outputs and clearly depicts the reduced noise level and better continuity of seismic events on the stack section.

References

Dean K. Clark et al., Common Reflection Angle Migration (CRAM) for improved input to reservoir description – An example from, offshore India. Extended Abstracts, SPG India, Hyderabad, 2010.

Ravve, I., and Z. Koren, 2010, Full-Azimuth Subsurface Angle Domain Wavefield Decomposition and Imaging; Part II: Local Angle Domain; GEOPHYSICS, VOL. 76, NO. 2 (MARCH-APRIL 2011); P. S51-S64

Acknowledgements

Authors wish to express their sincere gratitude to Director (E), ONGC for giving permission to publish this paper. We express our heartfelt thanks to Shri Pradipta Mishra, ED-HQ-GEOPIC for his excellent guidance and valuable suggestions during the execution of this project. Thanks are extended to the geoscientists from Cauvery basin, Chennai, India, for their time to time interactions.

Statement from authors:

Views expressed in this study are those of the authors only and do not reflect the official views of the company i.e. the Oil and Natural Gas Corporation Ltd.